IB Physics: K.A. Tsokos

Teacher notes

Topic D

Electric potential - an unfair question from the M23 Paper 1 TZ2 exam.

Consider two identical conducting spheres of radius R a distance d apart (center to center). Each sphere has positive charge Q on its surface.

Where, on the horizontal dotted line, is the electric potential a maximum or a minimum?
At a distance x from the left center the potential is $V=\frac{k Q}{x}+\frac{k Q}{d-x}=\frac{k Q d}{x(d-x)}$. The smallest value of x is R and the largest is $d-R$.

On the surface of each sphere the potential is $V=\frac{k Q d}{R(d-R)}$.
At the midpoint $\left(x=\frac{d}{2}\right)$ it is $V=\frac{4 k Q}{d}$.
Which potential is greater?

To properly answer this we need calculus. What can we say without calculus?
Consider spheres with a very small radius. Then at the surface of each sphere
$V=\frac{k Q d}{R(d-R)} \approx \frac{k Q d}{R(d-0)}=\frac{k Q}{R}$
Since R is very small compared to d the potential on the spheres is greater than at the midpoint.

With calculus we find:

IB Physics: K.A. Tsokos

From $V=\frac{k Q}{x}+\frac{k Q}{d-x}$ we get
$\frac{d V}{d x}=-\frac{k Q}{x^{2}}+\frac{k Q}{(d-x)^{2}}=k Q \frac{-(d-x)^{2}+x^{2}}{x(d-x)^{2}}=k Q \frac{d(2 x-d)}{x(d-x)^{2}}$
Thus, if $x<\frac{d}{2}, \frac{d V}{d x}<0$ and so the potential decreases as we move away from the surface of the left sphere.

And, if $x>\frac{d}{2}, \frac{d V}{d x}>0$ and so the potential increases as we move past the midpoint M.
At $x=\frac{d}{2}, \frac{d V}{d x}=0$ and the potential is at a minimum.
The potential looks like the following graph. Units for V are arbitrary.

